2020年普通高等學校招生全國統(tǒng)一考試理科數(shù)學注意事項:1.答題前,考生務必將自己的姓名、考生號、座位號填寫在答題卡上.本試卷滿分150分.2.作答時,將答案寫在答題卡上.寫在本試卷上無效.3.考試結束后,將本試卷和答題卡一并交回.一、選擇題:本題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.已知集合U={?2,?1,0,1,2,3},A={?1,0,1},B={1,2},則()A.{?2,3}B.{?2,2,3}C.{?2,?1,0,3}D.{?2,?1,0,2,3}2.若α為第四象限角,則()A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<03.在新冠肺炎疫情防控期間,某超市開通網(wǎng)上銷售業(yè)務,每天能完成1200份訂單的配貨,由于訂單量大幅增加,導致訂單積壓.為解決困難,許多志愿者踴躍報名參加配貨工作.已知該超市某日積壓500份訂單未配貨,預計第二天的新訂單超過1600份的概率為0.05,志愿者每人每天能完成50份訂單的配貨,為使第二天完成積壓訂單及當日訂單的配貨的概率不小于0.95,則至少需要志愿者()A.10名B.18名C.24名D.32名4.北京天壇的圜丘壇為古代祭天的場所,分上、中、下三層,上層中心有一塊圓形石板(稱為天心石),環(huán)繞天心石砌9塊扇面形石板構成第一環(huán),向外每環(huán)依次增加9塊,下一層的第一環(huán)比上一層的最后一環(huán)多9塊,向外每環(huán)依次也增加9塊,已知每層環(huán)數(shù)相同,且下層比中層多729塊,則三層共有扇面形石板(不含天心石)()
A.3699塊B.3474塊C.3402塊D.3339塊5.若過點(2,1)圓與兩坐標軸都相切,則圓心到直線的距離為()A.B.C.D.6.數(shù)列中,,,若,則()A.2B.3C.4D.57.如圖是一個多面體的三視圖,這個多面體某條棱的一個端點在正視圖中對應的點為,在俯視圖中對應的點為,則該端點在側視圖中對應的點為()A.B.C.D.8.設為坐標原點,直線與雙曲線的兩條漸近線分別交于兩點,若的面積為8,則的焦距的最小值為()A.4B.8C.16D.329.設函數(shù),則f(x)()A.是偶函數(shù),且在單調(diào)遞增B.是奇函數(shù),且在單調(diào)遞減
C.偶函數(shù),且在單調(diào)遞增D.是奇函數(shù),且在單調(diào)遞減10.已知△ABC是面積為的等邊三角形,且其頂點都在球O的球面上.若球O的表面積為16π,則O到平面ABC的距離為()A.B.C.1D.11.若,則()A.B.C.D.12.0-1周期序列在通信技術中有著重要應用.若序列滿足,且存在正整數(shù),使得成立,則稱其為0-1周期序列,并稱滿足的最小正整數(shù)為這個序列的周期.對于周期為的0-1序列,是描述其性質(zhì)的重要指標,下列周期為5的0-1序列中,滿足的序列是()A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分.13.已知單位向量a,b的夾角為45°,ka–b與a垂直,則k=__________.14.4名同學到3個小區(qū)參加垃圾分類宣傳活動,每名同學只去1個小區(qū),每個小區(qū)至少安排1名同學,則不同的安排方法共有__________種.15.設復數(shù),滿足,,則=__________16.設有下列四個命題:p1:兩兩相交且不過同一點的三條直線必在同一平面內(nèi).p2:過空間中任意三點有且僅有一個平面.p3:若空間兩條直線不相交,則這兩條直線平行.p4:若直線l平面α,直線m⊥平面α,則m⊥l.則下述命題中所有真命題的序號是__________.①②③④
三、解答題:共70分.解答應寫出文字說明、證明過程或演算步驟.第17~21題為必考題,每個試題考生都必須作答.第22、23題為選考題,考生根據(jù)要求作答.(一)必考題:共60分.17.中,sin2A-sin2B-sin2C=sinBsinC.(1)求A;(2)若BC=3,求周長的最大值.18.某沙漠地區(qū)經(jīng)過治理,生態(tài)系統(tǒng)得到很大改善,野生動物數(shù)量有所增加.為調(diào)查該地區(qū)某種野生動物的數(shù)量,將其分成面積相近的200個地塊,從這些地塊中用簡單隨機抽樣的方法抽取20個作為樣區(qū),調(diào)查得到樣本數(shù)據(jù)(xi,yi)(i=1,2,…,20),其中xi和yi分別表示第i個樣區(qū)的植物覆蓋面積(單位:公頃)和這種野生動物的數(shù)量,并計算得,,,,.(1)求該地區(qū)這種野生動物數(shù)量的估計值(這種野生動物數(shù)量的估計值等于樣區(qū)這種野生動物數(shù)量的平均數(shù)乘以地塊數(shù));(2)求樣本(xi,yi)(i=1,2,…,20)的相關系數(shù)(精確到0.01);(3)根據(jù)現(xiàn)有統(tǒng)計資料,各地塊間植物覆蓋面積差異很大.為提高樣本的代表性以獲得該地區(qū)這種野生動物數(shù)量更準確的估計,請給出一種你認為更合理的抽樣方法,并說明理由.附:相關系數(shù)r=,=1414.19.已知橢圓C1:(a>b>0)的右焦點F與拋物線C2的焦點重合,C1的中心與C2的頂點重合.過F且與x軸垂直的直線交C1于A,B兩點,交C2于C,D兩點,且|CD|=|AB|.(1)求C1的離心率;(2)設M是C1與C2的公共點,若|MF|=5,求C1與C2的標準方程.20.如圖,已知三棱柱ABC-A1B1C1的底面是正三角形,側面BB1C1C是矩形,M,N分別為BC,B1C1的中點,P為AM上一點,過B1C1和P的平面交AB于E,交AC于F.
(1)證明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)設O為△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直線B1E與平面A1AMN所成角的正弦值.21.已知函數(shù)f(x)=sin2xsin2x.(1)討論f(x)在區(qū)間(0,π)的單調(diào)性;(2)證明:;(3)設n∈N*,證明:sin2xsin22xsin24x…sin22nx≤.(二)選考題:共10分.請考生在第22、23題中任選一題作答.并用2B鉛筆將所選題號涂黑,多涂、錯涂、漏涂均不給分.如果多做,則按所做的第一題計分.[選修4—4:坐標系與參數(shù)方程]22.已知曲線C1,C2參數(shù)方程分別為C1:(θ為參數(shù)),C2:(t為參數(shù)).(1)將C1,C2的參數(shù)方程化為普通方程;(2)以坐標原點為極點,x軸正半軸為極軸建立極坐標系.設C1,C2的交點為P,求圓心在極軸上,且經(jīng)過極點和P的圓的極坐標方程.[選修4—5:不等式選講]23.已知函數(shù).
(1)當時,求不等式的解集;(2)若,求a的取值范圍.