2020年高考真題數(shù)學(xué)(天津卷) (含解析)
ID:27838 2021-09-15 1 3.00元 22頁 1.73 MB
已閱讀10 頁,剩余12頁需下載查看
下載需要3.00元
免費下載這份資料?立即下載
絕密★啟用前2020年普通高等學(xué)校招生全國統(tǒng)一考試(天津卷)數(shù)學(xué)本試卷分為第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,共150分,考試用時120分鐘.第Ⅰ卷1至3頁,第Ⅱ卷4至6頁.答卷前,考生務(wù)必將自己的姓名、考生號、考場號和座位號填寫在答題卡上,并在規(guī)定位置粘貼考試用條形碼。答卷時,考生務(wù)必將答案涂寫在答題卡上,答在試卷上的無效??荚嚱Y(jié)束后,將本試卷和答題卡一并交回。祝各位考生考試順利!第I卷注意事項:1.每小題選出答案后,用鉛筆將答題卡上對應(yīng)題目的答案標(biāo)號涂黑.如需改動,用橡皮擦干凈后,再選涂其他答案標(biāo)號.2.本卷共9小題,每小題5分,共45分.參考公式:如果事件與事件互斥,那么.如果事件與事件相互獨立,那么.球的表面積公式,其中表示球的半徑.一、選擇題:在每小題給出的四個選項中,只有一項是符合題目要求的.1.設(shè)全集,集合,則()A.B.C.D.【答案】C【解析】【分析】首先進(jìn)行補集運算,然后進(jìn)行交集運算即可求得集合的運算結(jié)果. 【詳解】由題意結(jié)合補集的定義可知:,則.故選:C.【點睛】本題主要考查補集運算,交集運算,屬于基礎(chǔ)題.2.設(shè),則“”是“”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件【答案】A【解析】【分析】首先求解二次不等式,然后結(jié)合不等式的解集即可確定充分性和必要性是否成立即可.【詳解】求解二次不等式可得:或,據(jù)此可知:是的充分不必要條件.故選:A.【點睛】本題主要考查二次不等式的解法,充分性和必要性的判定,屬于基礎(chǔ)題.3.函數(shù)的圖象大致為()AB. C.D.【答案】A【解析】【分析】由題意首先確定函數(shù)的奇偶性,然后考查函數(shù)在特殊點的函數(shù)值排除錯誤選項即可確定函數(shù)的圖象.【詳解】由函數(shù)的解析式可得:,則函數(shù)為奇函數(shù),其圖象關(guān)于坐標(biāo)原點對稱,選項CD錯誤;當(dāng)時,,選項B錯誤.故選:A.【點睛】函數(shù)圖象的識辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對稱性.(4)從函數(shù)的特征點,排除不合要求的圖象.利用上述方法排除、篩選選項.4.從一批零件中抽取80個,測量其直徑(單位:),將所得數(shù)據(jù)分為9組:,并整理得到如下頻率分布直方圖,則在被抽取的零件中,直徑落在區(qū)間內(nèi)的個數(shù)為() A.10B.18C.20D.36【答案】B【解析】【分析】根據(jù)直方圖確定直徑落在區(qū)間之間的零件頻率,然后結(jié)合樣本總數(shù)計算其個數(shù)即可.【詳解】根據(jù)直方圖,直徑落在區(qū)間之間的零件頻率為:,則區(qū)間內(nèi)零件的個數(shù)為:.故選:B.【點睛】本題主要考查頻率分布直方圖的計算與實際應(yīng)用,屬于中等題.5.若棱長為的正方體的頂點都在同一球面上,則該球的表面積為()A.B.C.D.【答案】C【解析】【分析】求出正方體的體對角線的一半,即為球的半徑,利用球的表面積公式,即可得解.【詳解】這個球是正方體的外接球,其半徑等于正方體的體對角線的一半,即, 所以,這個球的表面積為.故選:C.【點睛】本題考查正方體的外接球的表面積的求法,求出外接球的半徑是本題的解題關(guān)鍵,屬于基礎(chǔ)題.求多面體的外接球的面積和體積問題,常用方法有:(1)三條棱兩兩互相垂直時,可恢復(fù)為長方體,利用長方體的體對角線為外接球的直徑,求出球的半徑;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的對稱性,球心為上下底面外接圓的圓心連線的中點,再根據(jù)勾股定理求球的半徑;(3)如果設(shè)計幾何體有兩個面相交,可過兩個面的外心分別作兩個面的垂線,垂線的交點為幾何體的球心.6.設(shè),則的大小關(guān)系為()A.B.C.D.【答案】D【解析】【分析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),即可得出的大小關(guān)系.【詳解】因為,,,所以.故選:D.【點睛】本題考查的是有關(guān)指數(shù)冪和對數(shù)值的比較大小問題,在解題的過程中,注意應(yīng)用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,確定其對應(yīng)值的范圍.比較指對冪形式的數(shù)的大小關(guān)系,常用方法:(1)利用指數(shù)函數(shù)的單調(diào)性:,當(dāng)時,函數(shù)遞增;當(dāng)時,函數(shù)遞減;(2)利用對數(shù)函數(shù)的單調(diào)性:,當(dāng)時,函數(shù)遞增;當(dāng)時,函數(shù)遞減;(3)借助于中間值,例如:0或1等. 7.設(shè)雙曲線的方程為,過拋物線的焦點和點的直線為.若的一條漸近線與平行,另一條漸近線與垂直,則雙曲線的方程為()A.B.C.D.【答案】D【解析】【分析】由拋物線的焦點可求得直線的方程為,即得直線的斜率為,再根據(jù)雙曲線的漸近線的方程為,可得,即可求出,得到雙曲線的方程.【詳解】由題可知,拋物線的焦點為,所以直線的方程為,即直線的斜率為,又雙曲線的漸近線的方程為,所以,,因為,解得.故選:.【點睛】本題主要考查拋物線的簡單幾何性質(zhì),雙曲線的幾何性質(zhì),以及直線與直線的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題.8.已知函數(shù).給出下列結(jié)論:①的最小正周期為;②是的最大值;③把函數(shù)的圖象上所有點向左平移個單位長度,可得到函數(shù)的圖象.其中所有正確結(jié)論的序號是A.①B.①③C.②③D.①②③【答案】B 【解析】【分析】對所給選項結(jié)合正弦型函數(shù)的性質(zhì)逐一判斷即可.【詳解】因為,所以周期,故①正確;,故②不正確;將函數(shù)的圖象上所有點向左平移個單位長度,得到的圖象,故③正確.故選:B.【點晴】本題主要考查正弦型函數(shù)的性質(zhì)及圖象的平移,考查學(xué)生的數(shù)學(xué)運算能力,邏輯分析那能力,是一道容易題.9.已知函數(shù)若函數(shù)恰有4個零點,則的取值范圍是()A.B.C.D.【答案】D【解析】【分析】由,結(jié)合已知,將問題轉(zhuǎn)化為與有個不同交點,分三種情況,數(shù)形結(jié)合討論即可得到答案.【詳解】注意到,所以要使恰有4個零點,只需方程恰有3個實根即可,令,即與的圖象有個不同交點. 因為,當(dāng)時,此時,如圖1,與有個不同交點,不滿足題意;當(dāng)時,如圖2,此時與恒有個不同交點,滿足題意;當(dāng)時,如圖3,當(dāng)與相切時,聯(lián)立方程得,令得,解得(負(fù)值舍去),所以.綜上,的取值范圍為.故選:D.【點晴】本題主要考查函數(shù)與方程的應(yīng)用,考查數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,是一道中檔題. 絕密★啟用前2020年普通高等學(xué)校招生全國統(tǒng)一考試(天津卷)數(shù)學(xué)第Ⅱ卷注意事項:1.用黑色墨水的鋼筆或簽字筆將答案寫在答題卡上.2.本卷共11小題,共105分.二、填空題:本大題共6小題,每小題5分,共30分.試題中包含兩個空的,答對1個的給3分,全部答對的給5分.10.是虛數(shù)單位,復(fù)數(shù)_________.【答案】【解析】【分析】將分子分母同乘以分母的共軛復(fù)數(shù),然后利用運算化簡可得結(jié)果.【詳解】.故答案為:.【點睛】本題考查復(fù)數(shù)的四則運算,屬于基礎(chǔ)題.11.在的展開式中,的系數(shù)是_________.【答案】10【解析】【分析】寫出二項展開式的通項公式,整理后令的指數(shù)為2,即可求出. 【詳解】因為的展開式的通項公式為,令,解得.所以的系數(shù)為.故答案為:.【點睛】本題主要考查二項展開式的通項公式的應(yīng)用,屬于基礎(chǔ)題.12.已知直線和圓相交于兩點.若,則的值為_________.【答案】5【解析】【分析】根據(jù)圓的方程得到圓心坐標(biāo)和半徑,由點到直線的距離公式可求出圓心到直線的距離,進(jìn)而利用弦長公式,即可求得.【詳解】因為圓心到直線的距離,由可得,解得.故答案為:.【點睛】本題主要考查圓的弦長問題,涉及圓的標(biāo)準(zhǔn)方程和點到直線的距離公式,屬于基礎(chǔ)題.13.已知甲、乙兩球落入盒子的概率分別為和.假定兩球是否落入盒子互不影響,則甲、乙兩球都落入盒子的概率為_________;甲、乙兩球至少有一個落入盒子的概率為_________.【答案】(1).(2).【解析】【分析】根據(jù)相互獨立事件同時發(fā)生的概率關(guān)系,即可求出兩球都落入盒子的概率;同理可求兩球都不落入盒子的概率,進(jìn)而求出至少一球落入盒子的概率. 【詳解】甲、乙兩球落入盒子的概率分別為,且兩球是否落入盒子互不影響,所以甲、乙都落入盒子概率為,甲、乙兩球都不落入盒子的概率為,所以甲、乙兩球至少有一個落入盒子的概率為.故答案為:;.【點睛】本題主要考查獨立事件同時發(fā)生的概率,以及利用對立事件求概率,屬于基礎(chǔ)題.14.已知,且,則的最小值為_________.【答案】4【解析】【分析】根據(jù)已知條件,將所求的式子化為,利用基本不等式即可求解.【詳解】,,,當(dāng)且僅當(dāng)=4時取等號,結(jié)合,解得,或時,等號成立.故答案為:【點睛】本題考查應(yīng)用基本不等式求最值,“1”合理變換是解題的關(guān)鍵,屬于基礎(chǔ)題.15.如圖,在四邊形中,,,且,則實數(shù)的值為_________,若是線段上的動點,且,則的最小值為_________. 【答案】(1).(2).【解析】【分析】可得,利用平面向量數(shù)量積的定義求得的值,然后以點為坐標(biāo)原點,所在直線為軸建立平面直角坐標(biāo)系,設(shè)點,則點(其中),得出關(guān)于的函數(shù)表達(dá)式,利用二次函數(shù)的基本性質(zhì)求得的最小值.【詳解】,,,,解得,以點為坐標(biāo)原點,所在直線為軸建立如下圖所示的平面直角坐標(biāo)系,,∵,∴的坐標(biāo)為, ∵又∵,則,設(shè),則(其中),,,,所以,當(dāng)時,取得最小值.故答案為:;.【點睛】本題考查平面向量數(shù)量積的計算,考查平面向量數(shù)量積的定義與坐標(biāo)運算,考查計算能力,屬于中等題.三、解答題:本大題共5小題,共75分.解答應(yīng)寫出文字說明,證明過程或演算步驟.16.在中,角所對的邊分別為.已知.(Ⅰ)求角的大?。唬á颍┣蟮闹?;(Ⅲ)求的值.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【解析】【分析】(Ⅰ)直接利用余弦定理運算即可;(Ⅱ)由(Ⅰ)及正弦定理即可得到答案;(Ⅲ)先計算出進(jìn)一步求出,再利用兩角和的正弦公式計算即可.【詳解】(Ⅰ)在中,由及余弦定理得 ,又因為,所以;(Ⅱ)在中,由,及正弦定理,可得;(Ⅲ)由知角為銳角,由,可得,進(jìn)而,所以.【點晴】本題主要考查正、余弦定理解三角形,以及三角恒等變換在解三角形中的應(yīng)用,考查學(xué)生的數(shù)學(xué)運算能力,是一道容易題.17.如圖,在三棱柱中,平面,,點分別在棱和棱上,且為棱的中點.(Ⅰ)求證:; (Ⅱ)求二面角的正弦值;(Ⅲ)求直線與平面所成角的正弦值.【答案】(Ⅰ)證明見解析;(Ⅱ);(Ⅲ).【解析】【分析】以為原點,分別以的方向為軸,軸,軸的正方向建立空間直角坐標(biāo)系.(Ⅰ)計算出向量和的坐標(biāo),得出,即可證明出;(Ⅱ)可知平面的一個法向量為,計算出平面的一個法向量為,利用空間向量法計算出二面角的余弦值,利用同角三角函數(shù)的基本關(guān)系可求解結(jié)果;(Ⅲ)利用空間向量法可求得直線與平面所成角的正弦值.【詳解】依題意,以為原點,分別以、、的方向為軸、軸、軸的正方向建立空間直角坐標(biāo)系(如圖),可得、、、、、、、、.(Ⅰ)依題意,,,從而,所以; (Ⅱ)依題意,是平面的一個法向量,,.設(shè)為平面的法向量,則,即,不妨設(shè),可得.,.所以,二面角的正弦值為;(Ⅲ)依題意,.由(Ⅱ)知為平面的一個法向量,于是.所以,直線與平面所成角的正弦值為.【點睛】本題考查利用空間向量法證明線線垂直,求二面角和線面角的正弦值,考查推理能力與計算能力,屬于中檔題.18.已知橢圓的一個頂點為,右焦點為,且,其中為原點.(Ⅰ)求橢圓方程;(Ⅱ)已知點滿足,點在橢圓上(異于橢圓的頂點),直線與以為圓心的圓相切于點,且為線段的中點.求直線的方程. 【答案】(Ⅰ);(Ⅱ),或.【解析】【分析】(Ⅰ)根據(jù)題意,并借助,即可求出橢圓的方程;(Ⅱ)利用直線與圓相切,得到,設(shè)出直線的方程,并與橢圓方程聯(lián)立,求出點坐標(biāo),進(jìn)而求出點坐標(biāo),再根據(jù),求出直線的斜率,從而得解.【詳解】(Ⅰ)橢圓的一個頂點為,,由,得,又由,得,所以,橢圓的方程為;(Ⅱ)直線與以為圓心的圓相切于點,所以,根據(jù)題意可知,直線和直線的斜率均存在,設(shè)直線的斜率為,則直線的方程為,即,,消去,可得,解得或.將代入,得,所以,點的坐標(biāo)為,因為為線段的中點,點的坐標(biāo)為,所以點的坐標(biāo)為,由,得點的坐標(biāo)為, 所以,直線的斜率為,又因為,所以,整理得,解得或.所以,直線的方程為或.【點睛】本題考查了橢圓標(biāo)準(zhǔn)方程的求解、直線與橢圓的位置關(guān)系、直線與圓的位置關(guān)系、中點坐標(biāo)公式以及直線垂直關(guān)系的應(yīng)用,考查學(xué)生的運算求解能力,屬于中檔題.當(dāng)看到題目中出現(xiàn)直線與圓錐曲線位置關(guān)系的問題時,要想到聯(lián)立直線與圓錐曲線的方程.19.已知為等差數(shù)列,為等比數(shù)列,.(Ⅰ)求和的通項公式;(Ⅱ)記的前項和為,求證:;(Ⅲ)對任意的正整數(shù),設(shè)求數(shù)列的前項和.【答案】(Ⅰ),;(Ⅱ)證明見解析;(Ⅲ).【解析】【分析】(Ⅰ)由題意分別求得數(shù)列的公差、公比,然后利用等差、等比數(shù)列的通項公式得到結(jié)果;(Ⅱ)利用(Ⅰ)的結(jié)論首先求得數(shù)列前n項和,然后利用作差法證明即可;(Ⅲ)分類討論n為奇數(shù)和偶數(shù)時數(shù)列的通項公式,然后分別利用指數(shù)型裂項求和和錯位相減求和計算和的值,據(jù)此進(jìn)一步計算數(shù)列的前2n項和即可.【詳解】(Ⅰ)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為q.由,,可得d=1. 從而的通項公式為.由,又q≠0,可得,解得q=2,從而的通項公式為.(Ⅱ)證明:由(Ⅰ)可得,故,,從而,所以.(Ⅲ)當(dāng)n奇數(shù)時,,當(dāng)n為偶數(shù)時,,對任意的正整數(shù)n,有,和①由①得②由①②得,由于,從而得:. 因此,.所以,數(shù)列的前2n項和為.【點睛】本題主要考查數(shù)列通項公式的求解,分組求和法,指數(shù)型裂項求和,錯位相減求和等,屬于中等題.20.已知函數(shù),為的導(dǎo)函數(shù).(Ⅰ)當(dāng)時,(i)求曲線在點處的切線方程;(ii)求函數(shù)的單調(diào)區(qū)間和極值;(Ⅱ)當(dāng)時,求證:對任意的,且,有.【答案】(Ⅰ)(i);(ii)的極小值為,無極大值;(Ⅱ)證明見解析.【解析】【分析】(Ⅰ)(i)首先求得導(dǎo)函數(shù)的解析式,然后結(jié)合導(dǎo)數(shù)的幾何意義求解切線方程即可;(ii)首先求得的解析式,然后利用導(dǎo)函數(shù)與原函數(shù)的關(guān)系討論函數(shù)的單調(diào)性和函數(shù)的極值即可;(Ⅱ)首先確定導(dǎo)函數(shù)的解析式,然后令,將原問題轉(zhuǎn)化為與有關(guān)的函數(shù),然后構(gòu)造新函數(shù),利用新函數(shù)的性質(zhì)即可證得題中的結(jié)論.【詳解】(Ⅰ)(i)當(dāng)k=6時,,.可得,,所以曲線在點處的切線方程為,即. (ii)依題意,.從而可得,整理可得:,令,解得.當(dāng)x變化時,的變化情況如下表:單調(diào)遞減極小值單調(diào)遞增所以,函數(shù)g(x)的單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,+∞);g(x)的極小值為g(1)=1,無極大值.(Ⅱ)證明:由,得.對任意的,且,令,則.①令. 當(dāng)x>1時,,由此可得在單調(diào)遞增,所以當(dāng)t>1時,,即.因為,,,所以.②由(Ⅰ)(ii)可知,當(dāng)時,,即,故③由①②③可得.所以,當(dāng)時,任意的,且,有.【點睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識點,對導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個角度進(jìn)行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結(jié)合思想的應(yīng)用.
同類資料
更多
2020年高考真題數(shù)學(xué)(天津卷) (含解析)