2007年海南省中考數(shù)學(xué)試卷一、選擇題(共10小題,每小題2分,滿分20分))1..的相反數(shù)是A.B..C.D....2.參加.??年海南省初中畢業(yè)升學(xué)考試的學(xué)生達(dá)到????人,用科學(xué)記數(shù)法表示這個(gè)人數(shù)應(yīng)記作()A.???B.???C.???D.????3.下列運(yùn)算,正確的是()A.?.=B..?=C..=?D.?.=4.如圖,兩條直線、被第三條直線所截,如果,?,那么.的度數(shù)為()A.?B.?C.?D..?5.由幾個(gè)大小相同的小正方體組成的立體圖形的俯視圖如圖所示,則這個(gè)立體圖形應(yīng)是下圖中的()A.B.C.D.6.一次函數(shù).的圖象不經(jīng)過()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限7.在??中,?=?,如果?=.,??=,那么sin的值是()??A.B.C.D..?.8.如圖,已知=.,那么添加下列一個(gè)條件后,仍無法判定??th的是()?????A.B.C.?=tD.?=htthtth9.如圖,?的半徑為徑,???,點(diǎn)、?分別是射線?、??上的動(dòng)點(diǎn),試卷第1頁,總8頁
且直線???.當(dāng)?平移到與?相切時(shí),?的長度是()A.徑B.徑C.徑D..徑10.自然數(shù),,,,從小到大排列后,其中位數(shù)為,如果這組數(shù)據(jù)唯一的眾數(shù)是,那么,所有滿足條件的,中,的最大值是()A.?B.C.D.二、填空題(共8小題,每小題3分,滿分24分))11.因式分解:.=________.12.反比例函數(shù)的圖象經(jīng)過點(diǎn)?.,則這個(gè)反比例函數(shù)的關(guān)系式為________.13.函數(shù):的自變量的取值范圍是________.14.如圖,已知等腰梯形??t的中位線h的長為,腰t的長為,則這個(gè)等腰梯形的周長為________.15.如圖,??沿th折疊后,點(diǎn)落在??邊上的處,若點(diǎn)t為?邊的中點(diǎn),??,則?t的度數(shù)為________.16.已知關(guān)于的方程.?徑徑.?的一個(gè)根是,那么徑________.17.在一個(gè)不透明的布袋中裝有.個(gè)白球和個(gè)黃球,它們除顏色不同外,其余均相同.若從中隨機(jī)摸出一個(gè)球,它是黃球的概率是,則=________.18.已知一個(gè)圓柱體側(cè)面展開圖為矩形??t(如圖),若??.徑,???徑,則該圓柱體的體積約為________徑?(取??,結(jié)果精確到??).試卷第2頁,總8頁
三、解答題(共6小題,滿分66分)).?19.(1)計(jì)算:.?.??;19.??.(2)解不等式組?..??20.“海之南”水果種植場今年收獲的“妃子笑”和“無核Ⅰ號”兩種荔枝共?.??千克,全部售出后收入????元.已知“妃子笑”荔枝每千克售價(jià)元,“無核Ⅰ號”荔枝每千克售價(jià).元,問該種植場今年這兩種荔枝各收獲多少千克?21.請根據(jù)下面“海南省部分年度教育經(jīng)費(fèi)總支出條形統(tǒng)計(jì)圖”(圖)與“海南省.??年教育經(jīng)費(fèi)支出扇形統(tǒng)計(jì)圖”(圖.)提供的信息,回答下列問題:請根據(jù)下面“海南省部分年度教育經(jīng)費(fèi)總支出條形統(tǒng)計(jì)圖”(圖)與“海南省.??年教育經(jīng)費(fèi)支出扇形統(tǒng)計(jì)圖”(圖.)提供的信息,回答下列問題:海南省.??年中學(xué)教育經(jīng)費(fèi)支出的金額是________億元(精確到???);.海南省.??年高校教育經(jīng)費(fèi)支出占全年教育經(jīng)費(fèi)總支出的百分率是________,在圖.中表示此項(xiàng)支出的扇形的圓心角的度數(shù)為________;?海南省.??年教育經(jīng)費(fèi)總支出與.??年比較,增長率是________(精確到???),相當(dāng)于建省前的年的________倍(精確到個(gè)位);請根據(jù)以上信息,寫出一條你認(rèn)為正確的結(jié)論或?qū)D辖逃l(fā)展有益的建議.22.如圖的方格紙中,??的頂點(diǎn)坐標(biāo)分別為.?、??和???.試卷第3頁,總8頁
(1)作出??關(guān)于軸對稱的??并寫出、?、?的對稱點(diǎn)、?、?的坐標(biāo);(2)作出??繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)?后的??,并寫出、?、?的對稱點(diǎn)....、?.、?.的坐標(biāo);(3)試判斷:??與.?.?.是否關(guān)于原點(diǎn)對稱.(只需寫出判斷結(jié)果)23.如圖,在正方形??t中,點(diǎn)在?t邊上,射線交?t于點(diǎn)h,交??的延長線于點(diǎn).(1)求證:th?th;(2)過點(diǎn)?作??h,交于點(diǎn),求證:;(3)設(shè)t,t,試問是否存在的值,使h?為等腰三角形?若存在,請求出的值;若不存在,請說明理由.24.如圖,直線與軸交于點(diǎn),與軸交于點(diǎn)?,已知二次函數(shù)的圖象?經(jīng)過點(diǎn)、?和點(diǎn)???.(1)求該二次函數(shù)的關(guān)系式;(2)設(shè)該二次函數(shù)的圖象的頂點(diǎn)為,求四邊形?的面積;?(3)有兩動(dòng)點(diǎn)t、h同時(shí)從點(diǎn)出發(fā),其中點(diǎn)t以每秒個(gè)單位長度的速度沿折線.?按?的路線運(yùn)動(dòng),點(diǎn)h以每秒個(gè)單位長度的速度沿折線?按?的路線運(yùn)動(dòng),當(dāng)t、h兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng).設(shè)t、h同時(shí)從點(diǎn)出發(fā)秒時(shí),th的面積為.①請問t、h兩點(diǎn)在運(yùn)動(dòng)過程中,是否存在th?,若存在,請求出此時(shí)的值;若不存在,請說明理由;②請求出關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;③設(shè)?是②中函數(shù)的最大值,那么?________.試卷第4頁,總8頁
參考答案與試題解析2007年海南省中考數(shù)學(xué)試卷一、選擇題(共10小題,每小題2分,滿分20分)1.D2.C3.A4.B5.C6.D7.A8.B9.A10.C二、填空題(共8小題,每小題3分,滿分24分)11.??.12.13.?14.15.??16..17.18.?或?.三、解答題(共6小題,滿分66分)19.解:(1)原式,.,;(2)解不等式①得:?,?解不等式②得,.?∴這個(gè)不等式組的解集為??..20.該場今年收獲“妃子笑”與“無核Ⅰ號”荔枝分別為.???千克和.??千克21.?.,,,?.,22.解:(1).??、?)???;試卷第5頁,總8頁
(2).、.??.、??.??;(3)??與.?.?.于原點(diǎn)不對稱.23.(1)證明:∵四邊形??t是正方形,∴tt?,.,thth,∴th?th.(2)證明:∵th?th,∴?,∵??h,∴?,又∵?,∴?,∵t?,∴?,∴,∴?,又∵?,∴,∴?,∴.?(3)解:存在符合條件的值此時(shí),?∵h(yuǎn)??,要使h?為等腰三角形,必須?h?,∴,又∵,∴,∴..?,試卷第6頁,總8頁
∴?.???,∴???,?∴ttan??.?24.解:(1)令?,則?,∴???,???,∵二次函數(shù)的圖象過點(diǎn)???,∴可設(shè)二次函數(shù)的關(guān)系式為..又∵該函數(shù)圖象過點(diǎn)???,???,??∴,?解得,.??.∴所求二次函數(shù)的關(guān)系式為.??.(2)∵??.??∴頂點(diǎn)的坐標(biāo)為??過點(diǎn)作軸于∴四邊形?梯形??.?.??∴四邊形?的面積為?.(3)①不存在th?∵若th?,則點(diǎn)t,h應(yīng)分別在線段,?上,此時(shí)??.,在?中,?.設(shè)點(diǎn)h的坐標(biāo)為?∴,?..∴∵th?,..?∴.試卷第7頁,總8頁
∴?∵.,不滿足??..?∴不存在th?.?.②根據(jù)題意得t,h兩點(diǎn)相遇的時(shí)間為?(秒).現(xiàn)分情況討論如下:?.體當(dāng)??時(shí),?;..體體當(dāng)?.時(shí),設(shè)點(diǎn)h的坐標(biāo)為.?..∴,?∴.??...∴;...體體體當(dāng).??時(shí),?設(shè)點(diǎn)h的坐標(biāo)為???,類似ⅱ可得?設(shè)點(diǎn)t的坐標(biāo)為??.?∴,.∴?.∴ht??..??..?.③當(dāng)??時(shí),?,函數(shù)的最大值是?;......?當(dāng)?.時(shí),.函數(shù)的最大值是:,?.??.當(dāng).??時(shí),,???..?∴?.?試卷第8頁,總8頁